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Abstract 

 
Catalytic partial oxidation (CPOX) reforming experiments were performed using a 10 

kW Aspen Products Group, Inc. fuel processing prototype utilizing military logistic fuels 

JP8 and S8.  S8 is a sulfur-free Fisher-Tropsch fuel, while JP8 is a multi-fuel blend, 

which could impact reforming efficiency, product distribution and byproduct production.  

Sulfur contained within the JP8 will adversely affect the product distribution; therefore, 

desulfurization beds, capable of removing up to 1000 ppm sulfur, were incorporated into 

the system.  The catalyst used in the prototype is noble metal dispersed on cordierite 

monolith.  The goal of this experiment was to evaluate the efficiency and product 

distribution of the prototype fuel processor through application of several potential 

military fuels.  These results are compared with computational models (Stanjan) to 

determine if CPOX reactions can be appropriately modeled.  JP8 with 700 ppm of sulfur 

had the highest efficiency of 84.62% followed by JP8 with 400 ppm of sulfur at 84.37% 

and S8 at 84.37%.      
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CATALYTIC PARTIAL OXIDATION REFORMING OF JP8 AND S8 
 

I.  Introduction 

Background 

William Grove developed the first hydrogen fuel cell in 1839.  In Grove’s 

experiment, water was electrolyzed into hydrogen and oxygen by providing a small 

current through it.  (Larminie et al, 2000)  This initial experiment shed some light as to 

how making the electrodes flat and porous, to allow both gas and electrolyte to pass 

through, increases the current provided by the fuel cell.  Ensuring the electrodes are flat 

and porous results in maximum contact between the electrode, electrolyte and the gas.   

Fuel cells take chemical energy from fuel and convert it into electricity.  These 

cells require hydrogen supplied to an anode and oxygen to a cathode.  Between the anode 

and cathode is an ion-conducting electrolyte material.  The anode serves as the negatively 

charged electrode while the cathode is the positively charged electrode.  The electrons 

must go through the electrolyte material to reach the oppositely charged site, providing an 

exploitable electric load.  (Song 2002)  A big advantage of fuel cells is the lack of 

moving parts and the fact they are more efficient at providing electricity versus internal 

combustion engines.  Fuel cells have the ability to not only reduce harmful nitrous oxides 

(NOx) emissions but also to increase the efficiency of fuel based power generation by a 

factor of two.  (Song 2002)  The major challenge in fuel cells is creating a constant 

hydrogen rich stream needed as fuel for the cells.  
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A reforming process is necessary since hydrogen storage tanks present safety 

issues.  The current need for a hydrogen rich fuel stream for fuel cells has driven the 

desire to convert military fuels, such as JP8, to hydrogen.  Reforming of fuels such as JP8 

using catalytic partial oxidation (CPOX) can provide many advantages over internal 

combustion engines by reducing the carbon dioxide (CO2) emissions, lowering the noise 

signature and making the system more energy efficient.  CPOX reduces CO2 emissions 

by creating more carbon monoxide (CO) used in fuel cells.  CO is valuable for system 

efficiency due to the heat of combustion value for CO.  By reforming JP8 to produce 

hydrogen, fuels burn more efficiently and emissions are reduced.  The current internal 

combustion engines are only 20% to 35% efficient while fuel cell systems could have an 

efficiency of 40% to 50% (Song 2002).  Reforming JP8 versus a fuel like methane is 

beneficial since the conversion for JP8 is above 99%.  Conversion of methane is around 

85% to 95% (Krummenacher et al. 2003).   

The hydrogen rich stream of fuel created when hydrocarbon fuels are reformed 

can be used in different ways with different fuel cells.   For example, polymer electrolyte 

membrane fuel cells can function on reformed pretreated hydrocarbons fuels, or on 

hydrogen (H2).  Hydrogen fuel can be used for polymer electrolyte membrane fuel cells, 

which could be used to power vehicles.  These fuel cell vehicles would have a system on-

board converting gasoline to hydrogen and CO.  For a vehicle powered by fuel cells, the 

fuel will need to be low in sulfur and aromatics in order to prevent the sulfur from 

poisoning the catalyst.  With the current fuel efficiency of cars of about 12% to 15%, 
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there is much room for improvement and a fuel cell powered car can be two to three 

times more efficient than existing vehicles.  (Song 2002) 

Molten carbonate fuel cells can use the hydrogen stream created from reforming 

hydrocarbons.  A molten carbonate fuel cell is a high temperature fuel cell operating 

around 50% to 60% efficiency.  The heat used by the fuel cell could be used to generate 

more electricity in a combined cycle system.  Molten carbonate fuel cells are ideally 

suited for a stationary electric power plant due to the problems of cracking when heating 

or cooling the system.  (Song 2002)   

Phosphoric acid fuel cell systems have demonstrated the capability of running on 

reformed hydrocarbon fuels.  Phosphoric acid fuel cell systems can have a fuel to 

electricity efficiency of 40% to 45%.   Phosphoric acid fuel cells are the most developed 

fuel cell technology and already boast more than seventy plant sites in the United States, 

Japan and Europe.  By providing hydrogen streams to different fuel cells, stationary or 

mobile power plants can achieve an increase in efficiency.  The internal combustion 

engine can benefit from using reformed hydrocarbons for fuel cell vehicles by improving 

the efficiency by two or three times, while decreasing the emissions produced.  With on-

board fuel reforming for fuel cell cars, there would be no change to the current 

infrastructure of existing gasoline stations.  (Song 2002) 
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Research Objectives 

The desired outcome of this investigation is a device producing a steady and 

constant stream of hydrogen fuel through reforming.  The goal is then to experimentally 

investigate JP8 and S8 performance with catalytic partial oxidation reforming to show the 

effects of sulfur and different aromatic components in fuel on the reforming process.  

Predictions suggest S8 should produce more hydrogen since it does not contain any 

sulfur, which poisons the catalyst.  Coking should be reduced for this fuel as well due to 

fewer aromatics.  This research will focus on catalytic partial oxidation reforming of two 

different fuels, JP8 and S8, containing varying sulfur content and percentages of 

aromatics. 
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II. Literature Review 

Chapter Overview 

This chapter discusses different types of fuel cells, fuels used in fuel reforming 

and different types of fuel reforming.  The goal of this chapter is to make the reader 

familiar with past and present fuel cells and fuel reforming technologies.  

Types of Fuel Cells 

A problem some fuel cells have is a slow reaction rate. Researchers have 

addressed this problem in three ways.  One solution is the use of a catalyst to speed up 

the reaction rates.  A second method for increasing reaction rates is to raise the 

temperature of the fuel cell.  The third technique is to increase the surface area of the 

electrode.  (Larminie et al, 2000)   

The corrosive nature of some fuels and coking directly affects the surface area of 

the electrode.  The main issues concerning the use of fuel cells are hydrogen is the most 

commonly used fuel and the reaction rates can be slow, leading to low current and power 

output.   

Many different types of fuel cells address the issues of coking, sulfur poisoning, 

and slow reaction rates.  The five major types of fuel cells are solid oxide fuel cells 

(SOFC), molten carbonate fuel cells (MCFC), polymer electrolyte membrane fuel cells 

(PEMFC), phosphoric acid fuel cells (PAFC) and alkaline fuel cells (AFC).  These fuel 

cells can use two types of metals as catalysts.  They can have either precious metal or 

non-precious metal catalysts.  The typical non-precious metal catalyst is nickel (Ni), 

which is supported on aluminum oxide (Al2O3).  The non-precious metal catalysts are 
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normally found in MCFC and SOFC.  The most common precious metal catalyst is 

platinum (Pt) and is also supported on Al2O3.  The precious metal catalyst can be found 

in PEMFC and PAFC.  (Larminie et al, 2000) 

In addition, fuel cells can be separated into the categories of high and low 

temperature fuel cells.  The high temperature fuel cells are SOFC and MCFC, while low 

temperature fuel cells are AFC, PEMFC and PAFC.  (Larminie et al, 2000)  

SOFC contain an oxide ion conducting ceramic electrolyte, beneficial since it will 

prevent corrosion.  The electrolyte material, yttria stabilized on zirconia (YSZ) is highly 

stable in oxidizing and reducing environments.  SOFC are similar to MCFC, both using 

hydrogen and carbon monoxide as fuel.  SOFC uses a negatively charged ion transferring 

from the cathode through the electrolyte to the anode, similar to MCFC types.  (Larminie 

et al, 2000)  SOFC are high temperature fuel cells normally operating at a temperature 

range of 650°C to 1100° C (Song 2002).  The commonly used electrolyte for SOFC is 

zirconia (ZrO) with a small amount (6% to 10%) of yttria (Y2O3) as a stabilizer.  The 

reason SOFC must be a high temperature fuel cell is at approximately 800°C, YSZ 

becomes a conductor for negatively charged oxygen ions.  (Larminie et al, 2000)  The 

typical anode for a SOFC is composed of zirconia with nickel as the metallic component.  

Nickel provides high electric conductivity for the anode.  The cathode material has varied 

because of the cost of noble metals.   (Larminie et al, 2000)   
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Figure 1: How solid oxide fuel cells work (US Department of Energy, 2007) 

SOFC are a good choice for on-board reforming of fuels due to the high fuel cell 

operating temperatures (650°C to 1100°C).  With the high operating temperature the 

excess heat could be used in thermal electricity generating plants, increasing the fuel 

efficiency.  Due to the high operating temperature, there is a significant start-up time 

required for SOFC.  These fuel cells are fairly sensitive to operating temperature.  For 

example, performance decreases of about 12% have been realized if the temperature 

drops to 900°C from 1100°C.  Due to the high temperatures involved, these devices 

require a large amount of thermal shielding, making it harder to create small and portable 

SOFC.  (Song 2002)    

MCFC initially operated with coal as the fuel.  Today, researchers endeavor to use 

MCFC with natural gas as a fuel.  MCFC have a carbonate electrolyte supported on a 
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lithium aluminum oxide (LiAlO).  The anode is a Ni-Cr/Ni-Al alloy, while the cathode is 

nickel oxide (NiO).  The difference between MCFC and other fuel cells is MCFC have 

the components stacked together and are heated to operating temperature over a period of 

approximately 14 hours.  Having the components stacked together and heated causes 

expansion and contraction.  If heating and cooling are not done slowly, the electrolyte 

will crack causing a direct connection from the anode to cathode.  (Larminie et al, 2000)  

The fuel cell normally operates at a temperature of 650°C.  MCFC are temperature 

sensitive as well.  A drop in temperature of 50°C could cause a drop in voltage of 

approximately 15%.  The downfall to an MCFC is the cathode needs a source of CO2 in 

order to create a carbonate ion.  (Song 2002) 

 

Figure 2: How molten carbonate fuel cells work (US Department of Energy, 2007) 
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PEMFC have membrane electrode assemblies (MEA); the anode, electrolyte and 

cathode are assembled as one.  PEMFC are compact fuel cells due to the thinness of the 

MEA.  The anode and cathode for normal PEMFC are platinum (Pt) based.  The 

electrolyte for a PEMFC is typically polytetrafluoroethylene (PTFE).  The strong bonds 

between carbon and fluorine allow for the electrolyte to be tough and able to withstand 

chemical attacks.  PTFE is hydrophobic driving the water away from the electrodes, 

therefore water management is a major issue in PEMFC. (Larminie et al, 2000) 

 

Figure 3: How polymer electrolyte membrane fuel cell work (US Department of 

Energy, 2007) 

The one problem with PEMFC is that CO will poison the Pt based anode.  CO is a 

product of reforming fuel.  One method to reduce the CO poisoning is to use a Pt-Ru 

anode catalyst (Paulus et al. 2000).  Even with a Pt-Ru anode catalyst, the fuel for a 
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PEMFC must contain less than 30 ppm of CO in order for the catalyst to function 

properly.  The three ways CO can be reduced are methanation, membrane separation and 

selective oxidation.  Methanation converts CO and H2 using hydrogenation to create 

methane, which will not poison the catalyst.  The downfall of methanation is it removes 

hydrogen that could otherwise be used as fuel for fuel cells, to make the methane.  

Membrane separation removes hydrogen separated from the gas mixtures.  The 

membrane used is normally palladium.  This membrane allows the hydrogen created to 

be used as fuel in the fuel cell.  This process uses selective oxidation by incorporating a 

small amount of air into the gas stream.  This resulting stream then passes over a precious 

metal catalyst where CO is absorbed.  The normal operating temperature of a PEMFC is 

between 70°C and 90°C allowing for immediate start up at 50% power and full power in 

about three minutes.  Since PEMFC operational temperatures are so low, they do not 

provide heat for the reforming process of hydrocarbons.  The biggest problem with 

PEMFC is the membrane needs to be hydrated.  Therefore, the cell needs to operate at 

temperatures (70°C to 90°C) to prevent the water from evaporating quickly.  The biggest 

benefit is the order of magnitude higher power density compared to any other fuel cell 

(except for AFC, which will have a similar power density).  With the high power density, 

PEMFC offers a reduction in size and cost.  The low operational temperature requires 

PEMFC to have little or no thermal shielding.  (Song 2002)  By having lower operational 

temperatures this provides less heat rejection.  This heat rejected by the fuel cell can be 

used in steam reforming as an external heat source.          
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PAFC has a phosphoric acid (H3PO4) electrolyte, beneficial since it is tolerant to 

carbon monoxide.  A disadvantage of using phosphoric acid is the relatively high freezing 

point (42°C).  With this high freezing point, the electrolyte must be kept above 42°C to 

prevent mechanical stress on the stack due to freezing and thawing of the electrolyte.  

Similar to PEMFC, the anode and cathode of PAFC are platinum based.  The stack for a 

PAFC contains ribbed bipolar plates serving as dividers for the individual cells, while 

connecting them in series and providing the fuel to the anode and cathode. (Larminie et 

al, 2000) 

 

Figure 4: How phosphoric acid fuel cells work (US Department of Energy, 2007) 

PAFC has the advantage of easy water management over PEMFC since it uses 

concentrated acid, there by reducing the water vapor pressure.  PAFC systems normally 

have an operating temperature of 180°C to 220°C.  The problem with PAFC is CO 
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poisoning the catalyst.  A water-gas shift reaction is necessary to reduce CO and prevent 

the reduced catalyst capability.  (Song 2002)  

AFC are phasing out due to some major downfalls; they require pure H2 and are 

sensitive to CO2.  AFC has a water problem similar to PEMFC except the cell produces 

water at the anode and removes it at the cathode.  AFC did have the benefit of being 

simple to design with an inexpensive electrolyte, potassium hydroxide (KOH).  Added to 

this benefit, the AFC reduces oxygen though a quick process and in turn allows for higher 

operating voltages.  AFC do not use bipolar plates and have non-precious metal for the 

anode and cathode, also contributing to the lower cost for AFC.  (Larminie et al, 2000)    

The operating temperature for AFC can vary from 120°C to 250°C based on the 

concentration of KOH (Song 2002).           

 

Figure 5: How alkaline fuel cells work (US Department of Energy, 2007) 
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Fuel Reforming: Internal or External 

There are two ways to implement fuel reforming: internal and external reforming.  

External reforming is a reforming process using steam reforming, catalytic partial 

oxidation or auto-thermal reforming.  For internal reforming, two different methods may 

be used.  The first is direct internal reforming where both fuel reforming and an 

electrochemical reaction occur in the same anode chamber.  With indirect internal 

reforming, the fuel reforming and the electrochemical reaction occur on opposite sides of 

the anode chamber.   

Advantages of using internal reforming over external reforming include the 

reduction in space required and an increase in efficiency of the system.  The current 

internal combustion engines are only 20% to 35% efficient while fuel cell systems have 

an efficiency of 40% to 50% (Song 2002).  This would help lower the energy demand 

placed on the ever-decreasing energy supplies.   

Fuels Used in Fuel Reforming 

In fuel reforming, alcohol or hydrocarbons are used as the fuels.  Alcohol fuels 

are favorable since they are sulfur free and can reform at low temperatures.  However, 

hydrocarbon fuels are preferred due to their higher energy densities. Hydrocarbon fuels 

require a system to remove the sulfur and prevent coking.  A current method used to 

reduce the sulfur content in fuel is selective absorption, with a mixture of nickel and 

nickel monoxide at 150°C.  In an experiment by Lenz et al, sulfur content was reduced in 

Jet A-1 from 290 ppmw to 1.2 ppmw. (Lenz et al., 2005)  Fuels such as JP8 are heavy 

hydrocarbons potentially leading to large amounts of carbon deposits forming.  Also, 
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fuels having a large amount of aromatics lead to even more carbon formation.  With a 

fuel such as JP8, the goal is to reform the fuel into small molecules (i.e. H2).  Smaller fuel 

molecules burn more efficiently and decrease the emissions produced.    

Variation in Methods of Fuel Reforming 

Fuel reforming can use one of three different methods.  Steam reforming is an 

endothermic reaction producing CO and H2 when adding hydrocarbon fuel and water.  

Some fuel cells, such as PEMFC, have a catalyst that can be easily poisoned by CO.  

Therefore, they can undergo a water-gas shift to produce CO2 and H2 as shown below. 

222 HCOOHCO +↔+  

Steam reforming is used in industry for large-scale hydrogen production (Larminine et al. 

2000).  An example of steam reforming is: 

222612 25H12COO12HHC +↔+  

Steam reforming also has the problem of coking from dehydrogenation and CO 

disproportion (Boudouard reaction) leading to deactivation of the catalyst.  To reduce the 

effects of coking, researchers have used a high steam to carbon ratio or a carbon resistant 

catalyst such as a noble metal.  An example of dehydrogenation is:  

242612 5H8C(s) 4CHHC ++↔  

Dehydrogenation is an undesirable result since it leads to a large amount of carbon being 

produced, thereby causing coking and deactivating the catalyst.  An example of a 

Boudouard reaction is:  

  COC2CO 2+↔  

The computational model described later shows this reaction (Hardiman et al. 2004).   
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A study of thermal efficiency of steam reforming heptane at 800°C using two 

kinetic computer modeling tools (Chemkin and Stanjan) illustrates the best results occur 

at a steam to carbon ratio of 2.25 (Lutz et al. 2004).  With the lower steam to carbon 

ratios, a small amount of methane is present in the system, decreasing the amount of 

hydrogen available.  This study also showed the maximum hydrogen production occurs at 

approximately 600°C.  This maximum indicates the point of zero methane.  If the 

temperature is increased above 600°C, hydrogen production will decrease due to the 

water-gas shift increasing the production of CO.  (Lutz et al. 2004)   Steam reforming is a 

common practice today to produce hydrogen using light hydrocarbons such as methane 

(CH4).  With steam reformation, an increase in pressure will cause the reaction to 

increase the amount of CH4 produced and a reduction in pressure will increase the 

amount of H2 produced based on LeChatelier’s principle.  Using LeChatelier’s principle, 

an increase in temperature would cause the amount of hydrogen produced to increase.  

(Larminine et al. 2000)    The current commercial catalysts used are Ni based with a 

support such as calcium monoaluminate (CaAl2O4) or magnesium oxide (MgO) and have 

temperatures above 500°C.  A kinetics study of steam reformation of isooctane has been 

performed.  Temperatures at the end of the catalyst bed below 523 K (249.85° C) would 

result in unacceptable reactions (Praharso et al. 2004).  The problem with larger 

hydrocarbons is coking; therefore, precious metal catalysts are needed to reduce the 

coking.  Using ceria as a support increases the activity, and has proven to be better than 

the alumina supported catalysts (Wang et al. 2002).  For steam reforming, larger 

hydrocarbons need a larger H2O/C ratio to have a stable reaction (Wang et al. 2002).  The 
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ceria support does not resist carbon deposits decreasing the reaction rates (Wang et al. 

2002). In a study using cerium (Ce) on a nickel/zeolite (Ni/ZSM-5) catalyst, the acid sites 

provided from the Ce will increase the cracking of the hydrocarbon while also increasing 

the oxidative steam reforming reaction.  In this same study, the addition of magnesium 

(Mg) caused the activity of the catalyst to decrease.  (Wang et al. 2005)   Cobalt-nickel 

(Co-Ni) catalysts increase the temperature and the steam to carbon ratio decreasing 

carbon build up on the catalysts (Hardiman et al. 2004).  But increasing the steam to 

carbon ratio decreases the efficiency of the system because more heat is required.  By 

having a partial oxidation reaction, the amount of hydrogen produced is greatly increased.  

(Wang et al. 2005)  This is the idea behind auto-thermal reforming discussed later.                         

The second method of fuel reforming is a catalytic partial oxidation (CPOX) 

reaction resulting in H2 and CO production.  An example of a CPOX reaction is:  

 22.56N13H CO 12N 22.56 6O  HC 222 22612 ++↔++  

The reaction above is at oxygen (O) to carbon (C) ratios of 1.0, with only CO, H2 and 

nitrogen (N2) as products, theoretically.  Comparing the steam reforming to CPOX 

reforming, one molecule of dodecane will produce 25 H2 molecules using steam 

reforming while the CPOX reaction will produce 13 H2 molecules.  Steam produces more 

hydrogen per molecule of fuel but CPOX reforming is exothermic.  Therefore, it is 

different than steam reforming since no external heat source is required.  Steam 

reforming can use the heat rejected from the fuel cells as the external heat source.  Some 

disadvantages of catalytic partial oxidation are coking and overheating because it is an 

exothermic process.   
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Partial oxidation has been looked at previously but the benefits in hydrogen 

production with a catalyst have lead to the investigation of CPOX reforming.  A partial 

oxidation reaction can occur without removing sulfur and can operate at higher 

temperatures, 1200°C to 1500°C.  (Larminie et al. 2000)  This reaction is exothermic and 

self sustaining once it is initiated.  The steam reforming reaction would need a continuous 

heat source.  A common problem in reforming also present in CPOX reforming is having 

coke build up on the catalyst, therefore deactivating it.  To try and reduce the amount of 

carbon deposition on the catalysts, oxygen-ion conducting catalyst have been used and 

are better than nickel based catalysts (Shekawat et al., 2006).  A study conducted with 

isooctane using CPOX reforming showed coking is increased when the sulfur content of 

the fuel is increased.  This shows sulfur not only poisons the catalyst, but it also increases 

coking which deactivates the catalyst quickly (Moon et al. 2004).  With the sulfur 

poisoning the catalyst non-selective reactions will occur causing coking.  The catalyst for 

a CPOX reaction is typically either Ni or Pt.  With methane as a fuel, a Ni based catalyst 

will provide more H2 but will have a low operation temperature.  A Pt catalyst with 

methane will be more stable but have lower selectivity to hydrogen (Corbo et al. 2006).  

With a CPOX reaction for a hydrocarbon such as propane, a catalyst with rhodium (Rh) 

supported on alumina has shown promising results.  Pt and Ni catalysts have been studied 

with many different supports.  An aluminum oxide (Al2O3) catalyst with supports of 

nickel oxide (NiO) and calcium oxide (CaO) proved to be superior over a platinum-ceria 

oxide (Pt-CeO) catalyst for reforming propane.  (Corbo et al. 2006)  A study was 

conducted of fuels similar to diesel and jet fuel and for n-Decane and n-Hexadecane over 
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a Rh-washed monolith.  The optimum production of CO and H2 was at a C to O ratio of 

0.8 while the catalyst contact time was 12 ms.  The lower the C to O ratio, the higher the 

temperature of the reaction; therefore a C to O ratio of 0.5 is the lowest C to O ratio the 

catalyst can handle before it is damaged (Krummenacher et al. 2003).   

The average pore size of the catalyst can play a large role in producing H2 and 

CO.  As the pore size increases, the selectivity of H2 and CO decreases dramatically.  A 

study done on i-octane and n-octane showed the maximum selectivity of hydrogen for an 

80 pores per linear inch (ppi) Rh coated alumina foam monolith catalyst is 88% while a 

45 ppi foam has a maximum selectivity of 48%.  The reason for the decrease in 

selectivity with the 45 ppi catalyst is more water is produced from the reaction than with 

the 80 ppi catalyst. (Panuccio et al., 2006)  The 80 ppi catalyst has the larger active area 

leading to higher selectivity to H2 and CO.  For CPOX reactors, many different types of 

catalysts can be used such as Ni, Pt and Rh.  Rh has the best selectivity to hydrogen while 

not being easily deactivated by aromatics.  The Rh catalyst has an advantage over the Pt 

catalyst since Rh is less likely to produce hydroxyl radicals, thereby producing less water.  

(Shekhawat et al., 2006).  CPOX reactors also reduce the sulfur content in fuels by the 

following reaction. 

OHS
n
1O

2
1SH 2n22 +→+  

This reaction will take hydrogen sulfide (H2S) and convert it to sulfur, easily separated 

and removed from the system (Gardner et al. 2002).  This is a new approach to 

desulfurization using sorbent material. 
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The third method of fuel reforming is a combination of the first two methods.  

The idea behind auto-thermal reforming (ATR) is the use of heat from the CPOX reaction 

as the heat source for the steam reforming, thereby allowing the system to be more 

efficient (Cheekatamarla et al., 2005).  A sample auto-thermal reformation reaction is:    

22222mn N *)
2
n*(3.76 +H*n)

2
m(+nCOOH*n+N )

2
n*(3.76 + O

2
n+HC +↔  

A benefit of auto-thermal reforming is the steam in the system will reduce the carbon 

deposition a CPOX reactor would normally experience (Shekhawat et al., 2006).  In a 

study conducted on auto-thermal reforming of JP8, it was seen the steam in the reforming 

process decreased the production of olefins and CO, while the production of hydrogen 

increased (Dreyer et al., 2006).  A study done on ATR of a synthetic diesel fuel showed 

when using a Pt/Ceria catalyst produced the highest hydrogen yield (79%) when the 

steam to carbon ratio was 2.5, the O/C ratio was 0.5 and the temperature was 400°C.  

This study showed synthetic diesel fuel will continue to give a 79% hydrogen yield after 

50 hours, thus indicating coking did not occur at these conditions even with aromatics.  

When JP8 with a sulfur content of 1000 ppmw was tested in this study, it revealed a 

decrease in hydrogen yield from 75% to 40% over the same period.  (Cheekatamarla et 

al., 2005)  This proves ATR with a Pt/Ceria catalyst cannot handle the sulfur contents 

typically found in military fuels.  The problem with ATR is when the catalyst is poisoned 

by sulfur a decrease in production of hydrogen as well as a decrease in the amount of heat 

used in the steam reforming.   
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III. Methodology 

Aspen Fuel Processor 

The 10 kW Aspen fuel processor is designed to handle jet fuel by desulfurizing 

the fuel.  This experiment operates at a fuel consumption rate of 21 ml/min and an air 

consumption rate of 68.2 to 75.8 SLPM.  The reformer can only handle fuels with up to 

1000 ppm of sulfur before H2 production begins to decrease due to the sulfur poisoning 

the catalyst.  The desulfurization reduces the sulfur build up on the catalyst, preventing 

the problem of catalyst deactivation.  The reformer has eight sulfur absorbent beds heated 

to 400°C and pressurized to 250-300 psi.  The fuel passes through these beds and the 

sulfur is absorbed.  Only six of these sulfur absorbent beds are active at a time while the 

other two regenerate.  Air runs through them to release the sulfur as a mixture of 

hydrogen sulfide and sulfur oxides back into the fuel tank.  This mixture of hydrogen 

sulfide and sulfur oxide is then vented out of the fuel tank.  The switching between active 

and recharging sulfur absorbent beds is accomplished via a valve between the fuel flow 

and air flow to the appropriate sulfur absorbent beds.  The fuel entering the CPOX reactor 

is at 350°C to 400°C and exits at approximately 1000°C.  If the fuel entering the CPOX 

reactor gets to higher than 400°C then undesired heterogeneous reaction could occur 

before the catalyst.  The CPOX reactor is a honeycomb structure with a platinum-based 

catalyst having additives on the catalyst helping to minimize the sulfur build up.   

The controller interface for the Aspen reformer was designed in labview.  This 

control panel lets the user see all the values from the temperature and pressure sensors for 

the desulfurization beds, combustion chamber and CPOX reactor.  The user only starts 
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the reformer and monitors the temperatures and pressure values.  Once normal operation 

levels are achieved then the user can adjust the air flow and fuel flow into the reactor to a 

desired O/C ratio.  The user must monitor the temperature in the CPOX reactor to ensure 

the temperature will not damage the catalyst or lead to coke formation.        

To determine the O/C ratio for the fuel, the fuel density, carbon weight percentage 

and fuel flow was required.  To determine the amount of carbon in moles per minute the 

following formula was used (shown for JP8 POSF 3773 as an example): 

min
C of moles1.174

mol
g12.011

min
cc21*

cc
g0.78*86.1%

=  

To calculate the amount of oxygen in moles per minute the following equation was used: 

min
O of moles 1.24622*0.209*

298K*
K mol g

J8.314

Pa 101325*
1000

min
L72.9

=  

This sample calculation gives an O/C ratio of 1.05.  These calculations need to be 

performed to properly adjust the fuel flow and air flow rates to give a desired O/C ratio. 
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Figure 6: Schematic of experiment setup 
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Figure 7: Experimental setup 

The reformate from the Aspen reformer is sent to the HP 5890 Gas 

Chromatograph (GC) to analyze the gases.  When the reformate exits the Aspen reformer, 

it enters a T-joint to send a small amount of the reformate to the GC while the rest is sent 

through a cooling loop and vented out.   

The GC will take batch samples of the reformate being produced from the Aspen 

fuel processor.  The two detectors on the GC used to determine the type of gas and the 

amount gas are the thermal conductivity detector (TCD) and flame ionization detector 

(FID).  The thermal conductivity detector is comprised of a Wheatstone bridge with 

reference flow over one side of the bridge and sample flow over the other side.  The 
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difference in the reference flow and sample flow can be determined from the temperature 

change due to thermal conductivity.  This thermal conductivity difference will change the 

temperature and a temperature change will cause a difference in a recorded resistance.  

The flame ionization detector is a device using an air-hydrogen flame to produce ions.  

The column sample passes through the flame and burns producing ions.  These ions 

produce an electric current.  The more ions created, the greater the signal.   

The reformate in the GC is sent through a CTR I column and a Hayesep Q 

column.  The CTR I column is designed to perform at ambient temperatures and separate 

oxygen, nitrogen, methane, carbon monoxide and carbon dioxide.  The CTR I column has 

an inner column with a 1/8 inch outer diameter, while the outer column has a ¼ inch 

outer diameter.  The inner column of the CTR I easily separates air, methane and carbon 

dioxide.  The outer column handles oxygen, nitrogen, methane and carbon monoxide.  

The Hayesep Q column has a polymer composition of divinyl benzene created to separate 

nitrogen, oxygen, argon, and carbon monoxide at ambient temperatures. 

 The reformate signals from the GC are compared to signals generated with known 

gases.  Sample gases such as CH4, N2, CO2, CO, and H2 were sent through the GC to 

determine at what time peaks in the FID and TCD signal would occur to calibration the 

GC for reformate.  The TCD will show signals for all the gases to be produced in 

reformate, except for methane.  The FID will help determine the amount of hydrocarbons.  

The data acquired from the GC were compared with calculations made by Stanjan.  

Stanjan calculates chemical equilibrium using a method of element potential.  Element 

potential relates mole fractions of each species to quantities referred to as element 

24 



 

potentials.  There is one element potential for each independent atom in the system.  

Stanjan uses the values of absolute entropy at 1 atm and enthalpy values above 298.15 K 

(25°C).  Some of the species needed in this experiment were already in the files for 

Stanjan, while other species such as n-C10H22, C10H14, a-C7H14 were added using the 

accompanying utility JANFILE.  These species are used to model JP8 accurately, with a 

composition of 34% C12H26 32% C10H22 15% C10H14 16% C7H14 4% S (Montgomery et 

al. 2002).  The Burcat database provided the values for enthalpy and entropy.  This 

database provided the data in a polynomial form, allowing the values of enthalpy and 

entropy to be calculated for different temperatures.  These values had to be entered into 

the JANFILE program.  The new species could then be used in Stanjan to perform the 

chemical equilibrium calculations.  Calculations were made for fuels with different 

percentages of aromatics.  Aromatics should produce more coking issues since the bonds 

will be difficult to break and lead to coking or coking precursors.  This is of interest to 

see how this would affect the reformation process.  These calculations will be helpful in 

determining an ideal operating condition based on how different species changes with 

temperature and O/C ratios. 

Error estimates 

 There are two major components in the testing system to determine systemic 

error.  The first is the mass flow controller.  With flows from 68.2 SLPM to 75.8 SLPM 

the mass flow controller was observed varying from the set point.  The other systemic 

error is with the fuel pump.  With normal fuel flow at 21 cc/min, the fuel flow was 

measured at times being less than or greater than the set point.  These two systemic errors 
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will contribute to the O/C ratios varying.  The systemic error in the data could contribute 

to the statistical error by varying the O/C ratio from the set point and causing the values 

of mole fractions to increase or decrease.  The statistical error was measure by 

determining the standard deviation for the values measured at each O/C ratio for all the 

reformate components (Table 1). 

The mass flow controller flow varied up to 0.5 SLPM from the set point.  The fuel 

pump flow would vary 0.2 cc/min.  The pump flow variation was measured by 

disconnecting the flow into the desulfurization beds and having the fuel flow into a 

graduated cylinder for a set time period with a set flow.  This variation leads to JP8 with 

700 ppm sulfur having the O/C ratio plus or minus 0.018.  JP8 with 400 ppm will have an 

O/C ratio that varies plus or minus 0.0172 and S8 will be plus or minus 0.0182.    The 

standard deviation of the values recorded for each O/C ratio is in Table 1. 

  

Table 1: Standard deviation of reformate mole fraction values 

Fuel O/C ratio H2 CO CO2 N2
JP8 700 1.05124 0.00336 0.00767 0.00132 0.00829
JP8 700 1.07576 0.00387 0.00739 0.00079 0.00620
JP8 700 1.10027 0.00543 0.00787 0.00171 0.00406
S8 1.05508 0.00869 0.01393 0.00188 0.01211
S8 1.07519 0.00504 0.00957 0.00116 0.00845
S8 1.10458 0.01011 0.01361 0.00146 0.01305
JP8 400 1.05008 0.00544 0.00664 0.00151 0.00727
JP8 400 1.07477 0.00420 0.00953 0.00119 0.01018
JP8 400 1.10092 0.00552 0.01618 0.00208 0.01646  
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Table 2: Percent error of mole fraction reformate values 

Fuel O/C H2 (%) CO CO2 N2
JP8 700 1.051 1.473 3.131 17.303 1.598
JP8 700 1.076 1.697 3.085 11.469 1.181
JP8 700 1.100 2.428 3.319 21.968 0.764

S8 1.055 3.601 6.043 20.461 2.334
S8 1.075 2.057 4.234 13.304 1.624
S8 1.105 4.058 6.318 16.020 2.479

JP8 400 1.050 2.329 2.783 20.513 1.397
JP8 400 1.075 1.843 4.012 16.092 1.930
JP8 400 1.101 2.529 6.822 21.699 3.078  

The largest uncertainty is for carbon dioxide since it is the smallest component in the 

reformate.  The lowest occurs for O/C values of 1.075 due to three to four hours of 

testing at each of those points versus the other points with testing of one hour. 
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Figure 8: Hydrogen varying O/C ratio with statistical error 
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Figure 9: Hydrogen varying O/C ratios showing O/C ratio systematic uncertainty 

Figure 8 and 9 are samples of the statistical and systemic error for these calculations.  

Plots of other reformate products with error bars can be found in the appendix.  The error 

bars are not present in the plots later in this paper in an attempt to make the plot easier to 

read and enhance understanding of the data presented. 
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IV. Analysis and Results 

Results from Stanjan Simulations 

The 31% aromatics was a starting point since Montgomery et al., 2002 suggested 

JP8 is composed of  34% C12H26 32% C10H22 15% C10H14 16% C7H14 4% S.  The percent 

of aromatics was varied to see how it would affect the output.  Without creating a 

chemical kinetic mechanism, changing aromatics had very little effect on the chemical 

equilibrium calculation.  A study was performed using experimental data to help explain 

the surface kinetics of the system since the largest hydrocarbon with surface kinetics data 

available is ethane.  This same study used a plug flow subroutine in Chemkin to handle 

the homogeneous calculation for the CPOX reactor (Panuccio et al., 2006).   

The difference in hydrogen selectivity is approximately 1% between 60% 

aromatics and 0% aromatics.  These predictions show S8 (0% aromatics) should produce 

more hydrogen than JP8 (31% aromatics).  This shows the highest predicted hydrogen 

selectivity will occur at 800°C.  For higher aromatics the decrease in H2 leads to an 

increase in methane. 
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Figure 10: The effects of aromatics on hydrogen selectivity with respect to 

temperature

The carbon selectivity for C for different aromatics does not change the effects of 

coking.  There is a large decrease in coking from 600°C to 700°C (Figure 11).  

Aromatics should produce more coking issues since the bonds will be difficult to 

break and leads to coking or coking precursors.  For an O/C ratio of 1.2 as shown in 

the graph the operating temperature should be above 800°C to eliminate coking. 
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Figure 11: The effects of aromatic on coking with respect to temperature 

Changing the O/C ratio had a big impact on hydrogen and carbon selectivity for JP8.  

H2 with varying O/C ratios, and temperatures in the range of 700°C to 800° C showed 

different effects.  At 700° C and an O/C ratio of 1.4 the hydrogen production begins 

to vary from all the other O/C ratios.  At 800° C the hydrogen selectivity at an O/C 

ratio of 1.2 is varying from all other O/C ratios.  When at 800°C, the difference in 

hydrogen selectivity from an O/C ratio of 1 to 1.4 is 13% to 15% depending on the 

aromatics composition.  The difference in hydrogen selectivity between O/C ratios of 

0.6 and 1 is only 0.4% (Figure 12).  Having an O/C ratio of 1 or less will yield more 

hydrogen.  Between 600°C to 800°C there is a large increase in hydrogen.  The higher 

O/C ratios have lower hydrogen selectivity due to the selectivity to H2O increasing.  

Higher hydrogen selectivity leads to higher efficiency for the system 
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Figure 12: Effect of varying O/C ratio on the production of hydrogen with respect to 

temperature 

For C, the carbon selectivity will decrease as you increase the O/C ratio and 

temperature (Figure 13).  
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Figure 13: The effects of varying O/C ratios on coking with respect to temperature 

This figure shows the dramatic decrease in carbon over the temperatures from 600 to 

800° C for JP8.   O/C has an important role in reducing coking.  The reformer is designed 

to run at an O/C ratio between 1.0 and 1.1.  To reduce coking issues the reformer should 

be above 950°C to ensure coking will not occur.  With O/C higher than 1.0 the excess 

carbon will lead to more coking occurring.  To produce the maximum amount of H2 

while producing the lowest amount of C, the ideal system would be run at 950° C with an 

O/C ratio a little above 1.0.  For the ideal system, the expected carbon output would be 

1% CH4, 0% C, 4.5% CO2 and 94.5% CO.  The hydrogen output in the ideal system 
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would be 1.5% CH4, 4.1% H2O and 94.4 % H2 (Figures 14 and 15) 
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Figure 14: Major carbon products with an O/C ratio of 1.04 with respect to 

temperature  

Figure 14 shows the selectivity to CO increases with temperature for JP8.  Increasing 

the O/C ratio will increase CO2 while decreasing coking and methane.  Coking and 

carbon dioxide are undesired products. Carbon dioxide will drive down the systems 

efficiency since CO is a desired product and provide thermal energy.  If carbon 

dioxide is produced then the CO selectivity will be decreasing.  The desired operation 

point is at an O/C ratio of 1.0 providing a temperature of 1000°C. 
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Figure 15: Major hydrogen products with an O/C ratio of 1.04 with respect to 

temperature 

Figure 15 shows the selectivity to H2 increases with temperature for JP8.  For increasing 

O/C ratios methane will decreases while H2O increases.  Water is undesired product since 

it will decrease the amount of hydrogen produced.  Ideally the system would run at an 

O/C ratio of 1.0 and a temperature of 1000°C to minimize the selectivity to water and 

maximize the selectivity to hydrogen. 

These are equilibrium calculations at an ideal point; thus, the actual results of a 

system such as this will vary.  These plots show a temperature of around 900° C to 1000° 

C will create the highest CO and H2 selectivity.  Running at any temperatures higher than 

this will slightly decrease the hydrogen selectivity and only improve the CO selectivity 

by 0.4%.  By running at a higher temperature the catalyst could be damaged due to the 
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heat.  To decrease the amount of CH4, a high O/C ratio and temperature are required.  A 

decrease in CH4 is desired because it indicates the dehydrogenation reactions are 

decreasing, which is associated with lower coking rates (Figure 16).   
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Figure 16: Carbon selectivity to methane with varying O/C ratios with respect to 

temperature 

In order to lower the amount of H2O, a high O/C ratio and high temperature is required.  

H2O is not a desirable product since it will be taking some of the hydrogen away from the 

production of H2 (Figure 17).  To minimize water production running at an O/C ratio of 

1.0 and a temperature of 1000°C would be ideal. 
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Figure 17: Hydrogen selectivity to water varying O/C ratios with respect to 

temperature 

To decrease the amount of CO2, a low O/C ratio and a high temperature are needed.  CO2 

reduction shows that the Boudouard reaction is reduced and the amount of coking is in 

turn reduced (Figure 18). 
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Figure 18: Carbon selectivity to carbon dioxide with varying O/C ratio with respect 

to temperature 

CO seems to have a similar pattern as H2 between 600° C to 800° C, the carbon 

selectivity to CO increases 65%.  The highest selectivity is at an O/C of 1.04 and the 

carbon selectivity to CO only increases 0.4% from 1000°C to 1200 C° showing operation 

at 1000°C is ideal to reduce the damage to the catalyst from the high temperatures.  This 

is somewhat expected since the stoichiometric balanced equation would yield only CO 

and H2.  CO is a desired product and can be used to power SOFC and MCFC.  Higher CO 

selectivity leads to higher efficiency for the system.  Increasing O/C ratios will produce 

more carbon dioxide while decreasing coking and methane (Figure 19).   

 

38 



 

0.35

0.45

0.55

0.65

0.75

0.85

0.95

600 650 700 750 800 850 900 950 1000 1050 1100

Temperature (C)

C
ar

bo
n 

Se
le

ct
iv

ity

CO O/C=0.6
CO O/C=0.8
CO O/C=1.04
CO O/C=1.2
CO O/C=1.4

 

Figure 19: Carbon selectivity to carbon monoxide with varying O/C ratios with 

respect to temperature 

Some coking precursors such as C2H2, C2H4, C3H2, C3H4, C3H4O and C3H6 were 

examined using Stanjan.  With the Aspen reformer non-methane hydrocarbons should be 

less than 0.2% mole fraction of the reformate.  With such a small concentrations of non -

methane hydrocarbons, these could not be found with the flame ionization detector when 

the signal was integrated.  The results showed between 600°C and 800° C, all the coking 

precursors increased when the O/C ratio was 1.0 or below.  Having O/C ratios at 1.2 or 

above will cause all coking precursors to decrease or level off at temperatures between 

600°C to 900° C.  The coking precursors do not comprise a significant portion of the 

carbon output because the largest carbon selectivity at the ideal point of 1000°C and O/C 

ratio of 1.04 would be 0.0000171% of C2H4 (Figure 20).   
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Figure 20: Carbon selectivity to ethylene with varying O/C ratios with respect to 

temperature 

The significance of the coking precursor is to observe trends, take note of where these 

form and discover how they might break down and cause coking.  Sulfur selectivity 

shows the sulfur in the system will bond with CO to form COS.  Once the temperature is 

above 700° C, COS begins to decrease while S2 begins to increase.  This could also be 

used to explain the increase in CO from 600°C to 800°C (Figure 21).   
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Figure 21: Sulfur selectivity for the major sulfur products at 31% aromatics and 

O/C ratio of 1.04 with respect to temperature 

Some reactions that are undesirable are shown below: 

OHO
2
1H

COO
2
1CO

OHCHCO
2HCCH

222

22

22

24

↔+

↔+

+↔+
+↔

 

The reactions above either cause coking or will take a desired product of CO and H2 and 

convert it into an undesirable product.  The design points for the reformer with JP8 fuel 

are shown in Table 3.  Table 3 shows the reformer should be used at an O/C ratio of 1.04 

and a temperature of approximately 1000°C. 
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Table 3: Stanjan predictions for design point using JP8 

STANJAN O/C Temperature
Maximize H2 1.04 1000

Minimize Coking 1.04 950
Maximize CO 1.04 1000
Minimize CO2 0.6 900

Maximize Efficiency 1.03 1000  

 

Results from Aspen Reformer 

 The goal of this study is to determine if S8 could be used as a fuel in fuel 

reforming.  This study will look at the effects of aromatics and sulfur concentrations on 

the systems efficiency and production of desired reformate products (hydrogen and 

carbon monoxide).  The O/C ratios will be varied from 1.05 to 1.1 to determine the 

design point for each fuel.  This data will be compared to the chemical equilibrium data 

to analyze how the system performed.    

The fuels tested were JP8 POSF 3773, JP8 POSF 4751 and S8 POSF 5018D.  

These three fuels have varying sulfur contents of 0 ppm (S8), 400 ppm (JP8 POSF 4571), 

and 700 ppm (JP8 POSF 3773).  The fuel density of S8 is 0.747 g/ml while both JP8 fuels 

have a density of 0.78 g/ml.  The carbon content by percent mass is lowest in S8 with a 

value of 84.6 %.  JP8 POSF 3773 has a carbon content of 86.1% and JP8 POSF 4751 has 

a carbon content of 86.3%.  The percent of aromatics varied vastly for these three fuels.  

JP8 POSF 3773 has 15.9% aromatics, JP8 POSF 4751 has 21% aromatics and S8 has 

zero aromatics.   

Mass balances were performed to help determine how much of the fuel was 

converted into reformate distinguishable by the gas chromatograph.  To do this, the moles 
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of nitrogen per minute and hydrogen per minute were calculated in a similar manner as 

above.   

     
min

H of moles2.25888

mol
g1.00794

min
cc21*

cc
g0.78*13.9%

=  

 

min
N of moles 3255.20.78*

298K*
K mol g

J8.314

Pa 101325*
1000

min
L72.9

2=  

To calculate the mass into the system, the moles for C, O, H, and N can be 

multiplied by their molecular weight to give the units of grams per minute.  The gas 

chromatograph is set to take a sample for one minute; therefore, the sum of grams per 

minute for each element is equal to the mass into the system.  To determine the mass out 

of the system, nitrogen must be used as a tie component since it should not react with 

anything.  A tie component should not change going through the reformer.  The amount 

of nitrogen into the reformer will match the nitrogen leaving the reformer.  The total 

moles out of the system can be determined by taking the total moles of nitrogen into the 

system and multiplying it by one over the mole fraction of nitrogen from the gas 

chromatograph reading as shown in the equation below.   

system ofout  moles  total42615.4
fractionmole5254.

1*
min

N of moles 3255.2 2 =  

Once the total moles have been determined, multiplying the total moles by the mole 

fraction will supply the moles of each component.  Then multiplying the molecular 
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weight by the amount of moles will give the mass of each component.  The mass of each 

component is summed to calculate the mass out of the system.  The mass balance is just 

mass out of the system divided by the mass into the system.  The mass balance 

calculations for the system ranged from .9119 to 1.000.   

With the values of O, C, H and N2 being determined in moles per minute a simple 

conversion from moles per minute to grams per minute is necessary for efficiency 

calculations as shown in the equation below. 

   
min

grams101.14
mole
grams011.12*

min
C of moles174.1 =  

This same calculation is performed to convert moles of hydrogen per minute to grams of 

hydrogen per minute.  The lab test reports for each fuel give the heat of combustion of the 

fuel in terms of BTU/lb. 

Table 4: Heats of Combustion for fuels and reformate 

Heat of Combustion BTU/lb Heat of Combustion MJ/Kg
JP8 POSF 3773 18625 43.322
JP8 POSF 4751 18584 43.226
S8 POSF 5018D 18964 44.110

H2 60957.7 141.788
CO 4343.6 10.103  

To simplify the calculations, this was converted into MJ/kg and the energy into the 

system was calculated with the following equation. 

kW 11.798
min
MJ .70789)

1000
g 2.27552

1000
14.101g(*

kg
MJ43.226 ==+  

To determine the energy out of the system, the moles for CO and H2 are multiplied by 

their respective molecular weight to give the amount of CO and H2 in grams. An example 
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is 0.9276 moles of H2 and 0.9274 moles of CO used to calculate energy out of the system 

using the heats of combustion for CO and H2 (Perry, et al. 1973).  

kW05.10
min
MJ 0.6030

1000
H of grams 2.0885*

Kg
MJ141.788

kg
MJ10.103*

1000
CO of grams 30.3758 2 ==+

 

To determine the efficiency, the energy out of the system is divided by the energy into 

the system as shown below. 

.851
kW11.798

kW 10.05
= 8 

The FID results from the Aspen reformer data show JP8 with 400 ppm of sulfur 

produces 2.4 times the amount of methane than S8 produces, while JP8 with 700 ppm of 

sulfur produces 4.25 times more methane than S8 produces.  Mole fraction data could not 

be calculated due to methane not showing up in the TCD data.  This difference in the 

amount of methane produced can be attributed to the differences in sulfur.  Since S8 has 

zero aromatics, it is easy to breakdown to CO and hydrogen without making any 

methane.  With the sulfur contents being so different, it is expected the higher sulfur 

content fuel will produce the least amount of hydrogen due to the sulfur poisoning the 

catalyst.  As sulfur content increases, the production of hydrogen decreases (Figure 22).  

S8 proved to provide the highest hydrogen production.  The difference in mole fraction of 

hydrogen between both JP8 fuels is only 0.01%.  S8 produced the largest amount of 

hydrogen due to having the highest weight percentage of hydrogen for all the fuels tested.  

The difference in hydrogen could be attributed to aromatic composition of the fuels, S8 
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has 0% aromatics while JP8 with 400 ppm S has 21% and JP8 with 700 ppm S has 

15.9%. 
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Figure 22: The effects of sulfur content in fuels on the production of hydrogen 

 Figure 22 shows sulfur content did not have a dramatic effect on the hydrogen 

production.  Since the reformer contains desulfurization beds to remove the sulfur from 

fuels with up to 1000 ppm of sulfur, this difference in hydrogen production could be 

attributed to the fact S8 has 0% aromatics while JP8 has 15.9% and 21% aromatics.  The 

desulfurization beds in the Aspen reformer help keep the hydrogen steam constant over a 

long period of time without the catalyst getting poisoned from sulfur content in the fuels 

(Figure 23). 
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Figure 23: Constant hydrogen production over a long period of time with fuels of 

various sulfur levels 

The difference in hydrogen weight percentage is the most likely cause for this difference 

in hydrogen production.  S8 is 15.4% hydrogen by weight and both JP8 fuels are 13.7% 

and 13.9%.  Therefore, the more hydrogen in the fuel, the more hydrogen one can expect 

out of the reformer (Figure 24).   
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Figure 24: The effects of varying O/C ratios on the production of hydrogen with 

various fuels and modeled fuels 

Through analysis of the data, the design point for S8 and JP8 with 700 ppm sulfur is 

an O/C ratio of 1.075.  The JP8 with 400 ppm had the highest temperature for the 

CPOX reactor at each O/C ratio.  The O/C ratio allows for adjustment of the 

temperature in the CPOX reactor; therefore, since JP8 with 400 ppm has the highest 

temperature, a design point shift to a lower O/C is logical.  With S8 having the 

highest hydrogen weight percentage it was predicted and expected S8 would produce 

more hydrogen than either JP8 fuel.  The predicted difference in hydrogen for S8 and 

JP8 is 0.0113% and the actual difference is 0.0155%. 
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Figure 25: The effects of varying O/C ratios on the CO production with various 

fuels and modeled fuels 

All fuels have similar trends to the modeled fuels.  The JP8 with 400 ppm sulfur 

produces the least amount of CO of the two fuels due to the fact it has a higher percent of 

aromatics (21%) as compared to JP8 with 700 ppm sulfur (15.9%).  It is expected and 

predicted for S8 to have lower CO production (0.0025%) than JP8 due to the lower 

carbon weight percentage value of S8 versus JP8.  The actual difference for CO mole 

fraction is 0.007%.  S8 should have a lower amount of CO due to the lower carbon 

weight percentage as compared to JP8.  S8 has a carbon weight percentage of 84.6% as 

compared to JP8 with 400 ppm sulfur at 86.3% and JP8 with 700 ppm sulfur at 86.1%. 

(Figure 25) 
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Figure 26: The effects of varying O/C ratios on the CO2 production with various 

fuels and modeled fuels 

Due to the fact S8 has a lower CO mole fraction than the JP8 fuels, it is logical for S8 to 

have more CO2. (Figure 26)  This is due to a reaction that was addressed earlier. 

22 COO
2
1  CO =+  

This reaction is not desirable since carbon dioxide will lower the efficiency values for the 

system.  The expected efficiency from the reformer predicts S8 should outperform the 

JP8 fuels in efficiency due to S8 having no aromatics. (Figure 27) 
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Figure 27: Predicted efficiency for the Aspen reformer using JP8 or S8 with respect 

to O/C ratios 

   By inspection of Figure 27, the design point for the reformer from the Stanjan 

calculations is around 1.0 to 1.03 at a temperature of 1000°C.  The highest efficiency for 

S8 is 94% and JP8 is 92.9%.  The samples of JP8 and S8 used with the reformer were run 

with O/C ratios varying from 1.05 to 1.1.  The reformer was designed to run at an O/C 

ratio of 1.075 to produce optimal results.   
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Figure 28: Efficiency of Aspen Reformer with various fuels and modeled fuels with 

respect to O/C ratios 

From Figure 28, JP8 with 700 ppm S has the highest efficiency (84.62%) at an O/C ratio 

of 1.05.  JP8 with 400 ppm S has the highest efficiency (84.37%) at an O/C ratio of 

1.075.  S8 has the highest efficiency (84.37%) at an O/C ratio of 1.075.  S8 had lower 

CPOX temperatures than JP8 by 15°C to 20°C.  The lower CPOX temperatures are 

attributed to aromatics having a higher heat of reaction.  The aromatic fuels could be 

performing better due to the desulfurization beds cracking the fuel and oxygenating the 

fuel making the conversion to CO and hydrogen easier.  To help project the efficiency of 

each fuel at the design point, linear trend lines were added to all the plots for the 

reformate components in terms of mole fraction.  The equations of the lines were used to 
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calculate mole fractions at varying O/C ratios.  With the new values of mole fractions for 

CO, CO2, H2, and N2, the efficiency of the system was calculated.  The values for 

temperature were also projected out to ensure the system remained higher than 950°C and 

less than 1100°C to make sure coking would not occur and the catalyst would not be 

damaged from the heat. 
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Figure 29: Projected efficiency values for the Aspen reformer with varying O/C 

ratios for various fuels 

Figure 29 shows the projected efficiency and actual data from the Aspen reformer for 

varying O/C ratios.  The highest efficiency of the system for S8 and JP8 with 400 ppm S 

is at an O/C ratio of 1.075.  At this point these fuels reach 10 kW of thermal energy, the 

maximum energy for this system.  JP8 with 700 ppm reached the highest efficiency at 
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1.05 and produced 10 kW of thermal energy at this point.  S8 is projected to produce 

coking at an O/C ratio of 1.04 and JP8 with 700 ppm S will produce coking at 1.00.  S8 is 

projected to continue to decrease in efficiency as the O/C ratio decreases.  The projected 

data for JP8 with 700 ppm sulfur initial decrease in efficiency from an O/C of 1.05 to 

1.04.  Then the projected data shows a small increase in efficiency by decrease the O/C 

ratio from 1.04 to 1.00 of 0.0012%.  JP8 with 400 ppm S shows a similar trend and the 

efficiency decrease from an O/C ratio 1.04 to 1.05.  The trend then begins to increase 

from an O/C ratio of 1.04 to 1.00 by 0.0024%.  Table 5 has the design points from the 

Aspen reformer to aid in the understanding of how the O/C ratios affect the reformate 

compositions.   

Table 5: Design points for Aspen reformer with varying fuels 

O/C ratios
JP8 400 S8 JP8 700

Maximize H2 1.05 1.075 1.075
Maximize CO 1.075 1.05 1.05
Minimize CO2 1.075 1.075 1.075

Maximize Efficiency 1.075 1.075 1.05  
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V.  Conclusions and Recommendations 

Conclusions of Research 

 S8 is a viable fuel to use in fuel reforming to provide reformate for fuel cells.  

While S8 did not achieve the same efficiency as JP8 with 700 ppm of S in testing it 

proved to be comparable to JP8 with 400 ppm S.  The aromatic fuels could be performing 

better due to the desulfurization beds cracking the fuel and oxygenating the fuel making 

the conversion to CO and hydrogen easier.  The encouraging factor with S8 is since it is a 

sulfur free fuel, the desulfurization beds could be removed from the Aspen fuel reformer 

causing a decrease in weight and an increase in the power density.  The current power 

density of the unit is 125 W/kg and by removing the desulfurization beds the power 

density would increase to 130.1 W/kg.  By removing the desulfurization beds from the 

system the start up time could be reduced by 2 to 2 ½ hours.  S8 has fewer aromatics than 

the JP8 fuels; this helps reduce any coking issues arising when runs are attempted with 

JP8 at lower O/C ratios and lower temperatures.  S8 has a higher heat of combustion 

value 44.11 MJ/kg, versus JP8 with a heat of combustion of 43.32 MJ/kg.  With more 

energy going into the system, it would therefore be possible to get more energy out with 

the same efficiency.    

 Stanjan modeling has proven to be a useful tool to use with the results from these 

tests on the reformer.  Stanjan showed trends and helped predict how S8 would differ 

from JP8.  While Stanjan can only provide equilibrium calculations, it offers values 

useful to measure against to see how close the reformer gets to equilibrium. Stanjan 

calculations are also useful in determining the design point of the reformer.  The 
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calculations showed the reformer should be operated around an O/C ratio of 1.0 to 1.03.  

The projected value for JP8 agreed with the Stanjan modeling, operating around an O/C 

of 1.0 would provide the best efficiency.   

Significance of Research 

This is of interest since these fuels are readily available for military applications 

and can be used to provide reformate to the fuel cells needed to power auxiliary devices, 

a viable remote power source.  The research provides vital information on long chain 

hydrocarbon fuels not well studied with catalytic partial oxidation.  Previous studies to 

investigate hydrocarbon fuels in catalytic partial oxidation did not provide information on 

S8 and JP8.  S8 in comparison with JP8 is important to determine if S8 would be an 

alternative fuel to use in reforming.  

Recommendations for Future Research 

Additional testing of the fuels needs to be performed over a wider range of O/C ratios.  

Through examination of various O/C ratios for each fuel, the design point and maximum 

efficiency could be enhanced.  Running tests over the projected O/C range would give a 

more complete set of data.  Since the reformer is designed with desulfurization beds there 

were some thoughts that S8 might not operate well in the system.  This reforming system 

was designed for fuel with aromatics and sulfur content, and the high pressure and 

temperature in the desulfurization beds will cause a breaking of the bonds for the 

aromatics to get rid of the sulfur.  The sulfur then is joined with oxygen or hydrogen and 

sent to the fuel tank to be vented out.  One potential explanation could be the more 

aromatic fuel could be performing better because the desulfurization beds oxygenate the 
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fuel and make for easier conversion to reformate.  With future runs the amount of energy 

into the system should be held constant instead of the amount of fuel into the system.  

Making these values equal will make the energy out of the system calculations more 

meaningful to see if S8 does outperform JP8.   

 The main problem with fuel reforming is dealing with the sulfur and coking 

issues.  The Aspen reformer successfully addressed the sulfur issue by including 

desulfurization beds.  This success was seen in Figure 23, which shows there is no 

decrease in hydrogen production over a period of time.    
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Figure 30: CPOX reforming of JP8 with varying O/C ratios with respect to 

temperature 

Figure 30 using Stanjan shows coking can be avoided only at high temperatures and high 

O/C ratios.  By increasing the O/C ratios above 1.0, hydrogen and carbon monoxide will 
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decrease, which are desired products in the reformate.  Steam reforming can address the 

issue of coking when the steam to carbon ratio is over one.   
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Figure 31: Steam reforming of JP8 with varying steam to carbon ratios with respect 

to temperature 

The drawback of steam reforming is energy must continually be put into the system to 

provide the heat to produce steam.  This heat could be provided from the rejected heat 

from SOFC or MCFC.  Steam reforming is of interest due to it having the highest 

efficiency of all fuel reforming.  With the CPOX process being exothermic, this energy 

could ideally be used with steam reforming to produce steam.     
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Figure 32: Auto-thermal reforming with JP8 varying steam to carbon ratios with 

respect to temperature 

The issue with coking can be addressed with auto-thermal reforming without having high 

O/C or steam to carbon ratios.  For future research steam reforming of JP8 and S8 will be 

investigated.  This research will begin with smaller hydrocarbon fuels such at propane 

and the larger hydrocarbon fuels will be used to see if the results can be predicted with 

reaction rates.  The quartz reactor in this experiment will have an 8 mm inner diameter so 

approximately 0.1 grams of catalyst will be used.  The catalyst used in this study will be a 

Pd/alumina and Rh/alumina.  The total gas flow of the system will be between 100 to 120 

ml/min to give a space velocity of 66,000 ml/(g*hr).   
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Appendix 

Table 6: Sample calculation for GC data on JP8 with 700 ppm 

sulfur

Ret Time Width Area Column TRF Rel Response Mole Rel to N2 Mole Fraction
1.503 0.293 9871 Q 39.4 250.533

4958.7 Q 42 118.065
4912.3 Q 42 116.959

1.847 0.267 40 Q 48 0.833 0.0127 CO2 0.0065
2.403 0.95 12484 MS 420 29.724 0.4518 H2 0.2303
4.803 0.987 2763 MS 42 65.786 N2 0.5096
9.62 1.807 1375 MS 42 32.738 0.4976 CO 0.2536

The thermal response values (TRF) were taken from Dietz 1967. 

Table 7: Sample calculation for mass balance on JP8 with 700 ppm sulfur 

Air Flow (SLPM) 72.2 Mol C/min 1.1743 Mol H/min 2.2589
Fuel Flow (cc/m) 21 Mol O/min 1.2343 Mol N2/min 2.3031

Temp (C) 984 O/C Ratio 1.0511 Total Moles 4.5191

C grams/min 14.1032 H grams/min 2.2768
O grams/min 19.7473 N2/grams min 64.5190

Total grams in 100.6463

Moles (out) Mass out (grams) Mass balance
CO2 0.0292 1.2840 0.9935
H2 1.0406 2.0979
N2 2.3031 64.5112
CO 1.1462 32.1038

Total grams out 99.9970  

Table 8: Sample calculations for Efficiency and Power on JP8 with 700 ppm sulfur 

Efficiency Power Output MJ/min Power Input MJ/min
0.8763 0.6218 0.7096

Power Out kW Power Input kW
10.363 11.827  
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Figure 33: CO varying O/C ratio with statistical error 
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Figure 34: CO varying O/C ratios showing O/C ratio systematic error 
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Figure 35: CO2 varying O/C ratios with statistical error 
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Figure 36: CO2 varying O/C ratios showing O/C ratio systematic error

64 



 

Bibliography 

1. Burcat, Alexander Ideal Gas Thermodynamic Data in Polynomial form for 
Combustion and Air Pollution Use. 9 May 2007 
http://garfield.chem.elte.hu/Burcat/burcat.html 

 
2. Campbell, Timothy J., Aly H. Shaaban, Franklin H. Holcomb, Reza Salavani, and 

Michael J. Binder. “JP-8 catalytic cracking for compact fuel processors,” Journal 
of Power Sources, 129: 81-89 (15 April 2004). 

 
3. Cheekatamarla, Praveen K. and Alan M. Lane. “Catalytic autothermal reforming 

of diesel fuel for hydrogen generation in fuel cells: I. Activity test and sulfur 
poisoning,” Journal of Power Sources, 152: 256-263 (1 December 2005). 
 

4. Corbo, Pasquale and Fortunato Migliardini. “Hydrogen production by catalytic 
partial oxidation of methane and propane on Ni and Pt catalyst,” International 
Journal of Hydrogen Energy, in press (24 July 2006). 
 

5.  Dietz, W.A. “Response factors for gas chromatographic analyses,” Journal of Gas 
 Chromotography, 5: 68-71 (1967). 

 
6. Dreyer, B.J., I.C. Lee, J.J. Krummenacher, and L.D. Schmidt. “Autothermal 

steam reforming of higher hydrocarbons n-Decane, n-hexadecane and JP-8,” 
Applied Catalysis A: General, 307: 184-194 (3 July 2006). 

 
7. Edwards, Tim. “‘Kerosene’ Fuels for Aerospace Propulsion- Composition and 

Properties,” 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 
AIAA Paper 2002-3874. Indianapolis, Indiana: July 7-10, 2002. 
 

8. Gardner, Todd H., David A. Berry, K. David Lyons, Stephen K. Beer, and Adam 
D. Freed. “Fuel processor integrated H2S catalytic partial oxidation technology for 
sulfur removal in fuel cell power plants,” Fuel, 81: 2157-2166 (December 2002). 
 

9. Hardiman, Kelfin M., Tan T. Ying, Adesoji A. Adesina, Eric M. Kennedy, and 
Bogdan Z. Dlugogorski. “Performance of Co-Ni catalyst for propane reforming 
under low steam-to-carbon ratios,” Chemical Engineering Journal, 102: 119-130 
(September 2004). 
 

10. Krummenacher, Jakob J., Kevin N. West, and Lanny D. Schmidt. “Catalytic 
partial oxidation of higher hydrocarbons at millisecond contact times: decane, 
hexadecane, and diesel fuel,” Journal of Catalysis, 215: 332-343 (25 April 2003).  
 

11. Larminie, James and Andrew Dicks. Fuel Cell Systems Explained. New York: 
Wiley, 2000. 

 

65 

http://garfield.chem.elte.hu/Burcat/burcat.html


 

12. Lenz, Bettina and Thomas Aicher. “Catalytic autothermal reforming of Jet fuel,” 
Journal of Power Sources, 149: 44-52 (26 September 2005). 

 
13. Lutz, Andrew E., Robert W. Bradshaw, Leslie Bromberg, and Alex Rabinovich. 

“Thermodynamic analysis of hydrogen production by partial oxidation 
reforming,” International Journal of Hydrogen Energy, 29: 809-816 (July 2004). 
 

14. Montgomery C. J., S. M. Cannon, M.A. Mawid, and B. Sekar. “Reduced 
Chemical Kinetic Mechanisms for JP-8 Combustion,” 40th AIAA Aerospace 
Science Meeting and Exhibit. AIAA Paper 2002-0336. Reno, Nevada: Jan. 14-17, 
2002. 

 
15. Moon, Dong J., Jong Woo Ryu, Sang Deuk Lee, Byung Gwon Lee, and Byoung 

Sung Ahn. “Ni-based catalyst for partial oxidation reforming of iso-octane,” 
Applied Catalyst A: General, 272: 53-60 (28 September 2004). 

 
16. Paulus, U.A., U. Endruschat, G.J. Feldmeyer, T.J. Schmidt, H. Bonneman, and 

R.J. Behm. “New PtRu alloy colloids as precursors for fuel cell catalyst,” Journal 
of Catalyst, 195: 383-393 (25 October 2000).  

 
17. Perry, Robert H., and Cecil H. Cliton. Chemical Engineers’ Handbook. New 

York: McGraw Hill, 1973. 
 
18. Phaharso, A.A. Adesina, D.L. Trimm, and N.W. Cant. “Kinetic study of iso-

octane steam reforming over a nickel-based catalyst,” Chemical Engineering 
Journal, 99: 131-136 (15 June 2004). 

 
19. W. C. Reynolds, Stanjan: interactive computer programs for Chemkin 

equilibrium analysis. Stanford University Report, January 1986. 
 
20. Shekhawat, Dushyant, Todd H. Gardner, David A. Berry, Maria Salazar, Daniel J. 

Haynes, and James J. Spivey. “Catalytic partial oxidation of n-tetradecane in the 
presence of sulfur of polynuclear aromatics: Effects of support on metal,” Applied 
Catalysis A: General, 311: 8-16 (September 2006). 

 
21. Song, Chunshan. “Fuel Processing for low-temperature and high temperature fuel 

cells: Challenges, and opportunities for sustainable development in the 21st 
century,” Catalysis Today, 77: 17-49 (December 2002). 

 
22. United States Department of Energy. Hydrogen, Fuel Cells & Infrastructure 

Technologies Program. 9 May 2007 
http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html  

 
23. Wang, Linsheng, Kazuhisa Murata, and Megumu Inaba. “Steam reforming of 

gasoline promoted by partial oxidation reaction on novel bimetallic Ni-based 

66 

http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html


 

catalysts to generate hydrogen for fuel cell powered automobile applications,” 
Journal of Power Sources, 145: 707-711 (18 August 2005). 

 
24. Wang, X. and R.J. Gorte. “A study of steam reforming of hydrocarbon fuels on 

Pd/ceria,” Applied Catalysis A: General, 224: 209-218 (25 January 2002). 
 

 

67 



 

68 

Vita 

 

 

Thomas G. Howell graduated from Wayne High School in Huber Heights, Ohio 

in 2000.  He then continued his education at Wright State University in Dayton, Ohio.  

He graduated from Wright State University in June of 2005 with a Bachelor of Science in 

biomedical engineering.  He received a Dayton Area Graduate School Institute 

scholarship to work on his Master’s at the Air Force Institute of Technology.  Once he 

completes his Master’s at AFIT, he will continue working for UES Inc and pursue a PhD 

in material science at the University of Cincinnati.   



 Form Approved 
REPORT DOCUMENTATION PAGE OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other 
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE  3. DATES COVERED (From – To) 

14-June-2007 Master’s Thesis  September 2006 – June 2007 

 

5a.  CONTRACT NUMBER 4.  TITLE AND SUBTITLE 

5b.  GRANT NUMBER 
 

 
 

CATALYTIC PARTIAL OXIDATION REFORMING OF JP8 AND S8 5c.  PROGRAM ELEMENT NUMBER  

5d.  PROJECT NUMBER 
 

6.  AUTHOR(S) 
 

5e.  TASK NUMBER Howell, Thomas G. 
 
 5f.  WORK UNIT NUMBER 
 
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION 
  Air Force Institute of Technology     REPORT NUMBER 
 Graduate School of Engineering and Management (AFIT/EN)  

     AFIT/GAE/ENY/07-J08  2950 Hobson Way, Building 640 
 WPAFB OH 45433-8865 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 

9
 Dr. Thomas Reitz 

.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

    AFRL/PRPS 
    1950 Fifth Street, Building 18G 11.  SPONSOR/MONITOR’S REPORT 

NUMBER(S)     WPAFB OH  45433-7765 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
         APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 
13. SUPPLEMENTARY NOTES  
 
 
14. ABSTRACT  
Catalytic partial oxidation (CPOX) reforming experiments were performed using a 10 kW Aspen Products Group, 
Inc. fuel processing prototype utilizing military logistic fuels JP8 and S8.  S8 is a sulfur-free Fisher-Tropsch fuel, 
while JP8 is a multi-fuel blend, which could impact reforming efficiency, product distribution and byproduct 
production.  Sulfur contained within the JP8 will adversely affect the product distribution; therefore, desulfurization 
beds, capable of removing up to 1000 ppm sulfur, were incorporated into the system.  The catalyst used in the 
prototype is noble metal dispersed on cordierite monolith.  The goal of this experiment was to evaluate the efficiency 
and product distribution of the prototype fuel processor through application of several potential military fuels.  These 
results are compared with computational models (Stanjan) to determine if CPOX reactions can be appropriately 
modeled.  JP8 with 700 ppm of sulfur had the highest efficiency of 84.62% followed by JP8 with 400 ppm of sulfur 
at 84.37% and S8 at 84.37%.      
  
15. SUBJECT TERMS 
     Catalytic partial oxidation, S8, JP8, sulfur, coking, steam reforming, autothermal reforming 

16. SECURITY 
CLASSIFICATION OF: 

19a.  NAME OF RESPONSIBLE PERSON 
Richard Branam, Major, USAF 

17. LIMITATION 
OF  

18. 
NUMBER  

     ABSTRACT       OF 19b.  TELEPHONE NUMBER (Include area code) c. THIS 
PAGE 

b. 
ABSTRA
CT 

a. 
REPO
RT 

       
PAGES 

(937) 255-6565, ext 7485 
  (Richard.branam@afit.edu) 

UU  U   
82 U U 

   Standard Form 298 (Rev. 8-
98) 
Prescribed by ANSI Std. Z39-
18



 

 

 


	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	I.  Introduction
	Background
	A reforming process is necessary since hydrogen storage tanks present safety issues.  The current need for a hydrogen rich fuel stream for fuel cells has driven the desire to convert military fuels, such as JP8, to hydrogen.  Reforming of fuels such as JP8 using catalytic partial oxidation (CPOX) can provide many advantages over internal combustion engines by reducing the carbon dioxide (CO2) emissions, lowering the noise signature and making the system more energy efficient.  CPOX reduces CO2 emissions by creating more carbon monoxide (CO) used in fuel cells.  CO is valuable for system efficiency due to the heat of combustion value for CO.  By reforming JP8 to produce hydrogen, fuels burn more efficiently and emissions are reduced.  The current internal combustion engines are only 20% to 35% efficient while fuel cell systems could have an efficiency of 40% to 50% (Song 2002).  Reforming JP8 versus a fuel like methane is beneficial since the conversion for JP8 is above 99%.  Conversion of methane is around 85% to 95% (Krummenacher et al. 2003).  
	The hydrogen rich stream of fuel created when hydrocarbon fuels are reformed can be used in different ways with different fuel cells.   For example, polymer electrolyte membrane fuel cells can function on reformed pretreated hydrocarbons fuels, or on hydrogen (H2).  Hydrogen fuel can be used for polymer electrolyte membrane fuel cells, which could be used to power vehicles.  These fuel cell vehicles would have a system on-board converting gasoline to hydrogen and CO.  For a vehicle powered by fuel cells, the fuel will need to be low in sulfur and aromatics in order to prevent the sulfur from poisoning the catalyst.  With the current fuel efficiency of cars of about 12% to 15%, there is much room for improvement and a fuel cell powered car can be two to three times more efficient than existing vehicles.  (Song 2002)
	Molten carbonate fuel cells can use the hydrogen stream created from reforming hydrocarbons.  A molten carbonate fuel cell is a high temperature fuel cell operating around 50% to 60% efficiency.  The heat used by the fuel cell could be used to generate more electricity in a combined cycle system.  Molten carbonate fuel cells are ideally suited for a stationary electric power plant due to the problems of cracking when heating or cooling the system.  (Song 2002)  
	Phosphoric acid fuel cell systems have demonstrated the capability of running on reformed hydrocarbon fuels.  Phosphoric acid fuel cell systems can have a fuel to electricity efficiency of 40% to 45%.   Phosphoric acid fuel cells are the most developed fuel cell technology and already boast more than seventy plant sites in the United States, Japan and Europe.  By providing hydrogen streams to different fuel cells, stationary or mobile power plants can achieve an increase in efficiency.  The internal combustion engine can benefit from using reformed hydrocarbons for fuel cell vehicles by improving the efficiency by two or three times, while decreasing the emissions produced.  With on-board fuel reforming for fuel cell cars, there would be no change to the current infrastructure of existing gasoline stations.  (Song 2002)
	Research Objectives
	The desired outcome of this investigation is a device producing a steady and constant stream of hydrogen fuel through reforming.  The goal is then to experimentally investigate JP8 and S8 performance with catalytic partial oxidation reforming to show the effects of sulfur and different aromatic components in fuel on the reforming process.  Predictions suggest S8 should produce more hydrogen since it does not contain any sulfur, which poisons the catalyst.  Coking should be reduced for this fuel as well due to fewer aromatics.  This research will focus on catalytic partial oxidation reforming of two different fuels, JP8 and S8, containing varying sulfur content and percentages of aromatics.

	II. Literature Review
	Chapter Overview

	III. Methodology
	Aspen Fuel Processor
	The reformate from the Aspen reformer is sent to the HP 5890 Gas Chromatograph (GC) to analyze the gases.  When the reformate exits the Aspen reformer, it enters a T-joint to send a small amount of the reformate to the GC while the rest is sent through a cooling loop and vented out.  
	The GC will take batch samples of the reformate being produced from the Aspen fuel processor.  The two detectors on the GC used to determine the type of gas and the amount gas are the thermal conductivity detector (TCD) and flame ionization detector (FID).  The thermal conductivity detector is comprised of a Wheatstone bridge with reference flow over one side of the bridge and sample flow over the other side.  The difference in the reference flow and sample flow can be determined from the temperature change due to thermal conductivity.  This thermal conductivity difference will change the temperature and a temperature change will cause a difference in a recorded resistance.  The flame ionization detector is a device using an air-hydrogen flame to produce ions.  The column sample passes through the flame and burns producing ions.  These ions produce an electric current.  The more ions created, the greater the signal.  
	The reformate in the GC is sent through a CTR I column and a Hayesep Q column.  The CTR I column is designed to perform at ambient temperatures and separate oxygen, nitrogen, methane, carbon monoxide and carbon dioxide.  The CTR I column has an inner column with a 1/8 inch outer diameter, while the outer column has a ¼ inch outer diameter.  The inner column of the CTR I easily separates air, methane and carbon dioxide.  The outer column handles oxygen, nitrogen, methane and carbon monoxide.  The Hayesep Q column has a polymer composition of divinyl benzene created to separate nitrogen, oxygen, argon, and carbon monoxide at ambient temperatures.

	IV. Analysis and Results
	Results from Stanjan Simulations

	V.  Conclusions and Recommendations
	Conclusions of Research
	 S8 is a viable fuel to use in fuel reforming to provide reformate for fuel cells.  While S8 did not achieve the same efficiency as JP8 with 700 ppm of S in testing it proved to be comparable to JP8 with 400 ppm S.  The aromatic fuels could be performing better due to the desulfurization beds cracking the fuel and oxygenating the fuel making the conversion to CO and hydrogen easier.  The encouraging factor with S8 is since it is a sulfur free fuel, the desulfurization beds could be removed from the Aspen fuel reformer causing a decrease in weight and an increase in the power density.  The current power density of the unit is 125 W/kg and by removing the desulfurization beds the power density would increase to 130.1 W/kg.  By removing the desulfurization beds from the system the start up time could be reduced by 2 to 2 ½ hours.  S8 has fewer aromatics than the JP8 fuels; this helps reduce any coking issues arising when runs are attempted with JP8 at lower O/C ratios and lower temperatures.  S8 has a higher heat of combustion value 44.11 MJ/kg, versus JP8 with a heat of combustion of 43.32 MJ/kg.  With more energy going into the system, it would therefore be possible to get more energy out with the same efficiency.   
	Significance of Research
	Recommendations for Future Research
	Figure 30 using Stanjan shows coking can be avoided only at high temperatures and high O/C ratios.  By increasing the O/C ratios above 1.0, hydrogen and carbon monoxide will decrease, which are desired products in the reformate.  Steam reforming can address the issue of coking when the steam to carbon ratio is over one.  

	Bibliography
	Vita

